Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nutr Biochem ; 124: 109514, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37918450

RESUMEN

Aquaporin 9 (AQP9) is an integral membrane protein that facilitates glycerol transport in hepatocytes and adipocytes. Glycerol is necessary as a substrate for gluconeogenesis in the physiological fasted state, suggesting that inhibiting AQP9 function may be beneficial for treating type 2 diabetes associated with fasting hyperglycemia. The n-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are rich in fish oil and lower the risk of metabolic syndrome; however, the effects of EPA and DHA on AQP9 expression in obese and type 2 diabetes are unclear. The KK mouse is an animal model of obesity and type 2 diabetes because of the polymorphisms on leptin receptor gene, which results in a part of cause for obese and diabetic conditions. In this study, we determined the effect of fish oil-derived n-3 PUFA on AQP9 protein expression in the liver and white adipose tissue (WAT) of KK mice and mouse 3T3-L1 adipocytes. The expression of AQP9 protein in the liver, epididymal WAT, and inguinal WAT were markedly decreased following fish oil administration. We also demonstrated that n-3 PUFAs, such as DHA, and to a lesser extent EPA, downregulated AQP9 protein expression in 3T3-L1 adipocytes. Our results suggest that fish oil-derived n-3 PUFAs may regulate the protein expressions of AQP9 in glycerol metabolism-related organs in KK mice and 3T3-L1 adipocytes.


Asunto(s)
Acuaporinas , Diabetes Mellitus Tipo 2 , Ácidos Grasos Omega-3 , Animales , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Células 3T3-L1 , Glicerol , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo , Aceites de Pescado/farmacología , Aceites de Pescado/metabolismo , Adipocitos , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/metabolismo , Hígado/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Obesidad/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Acuaporinas/farmacología , Ácidos Grasos Insaturados/farmacología , Tejido Adiposo Blanco/metabolismo
2.
J Tradit Chin Med ; 43(6): 1160-1167, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37946478

RESUMEN

OBJECTIVE: To investigate whether Hetong decoction (, HTT) alleviates constipation via regulating AQPs expression. METHODS: Constipation in rats was induced by loperamide, and rats were randomly assigned into model (saline), HHT-low (95 g/kg), HTT-medium (190 g/kg), HTT-high (380 g/kg) and positive control (mosapride) groups. Then the defecation function, the concentration of serum arginine vasopressin (AVP) and cyclic adenosine monophosphate (cAMP), and the expression of AQP3 and AQP8 in colon tissues were assessed. NCM460 colon cells with AQP3 and AQP8 knockdown or overexpression were exposed to serum from rats that received low or high dose of HTT, followed by detection of AQP3 and AQP8 expression. RESULTS: The model group showed lower fecal weight and water content, weaker intestinal transit, higher serum concentration of AVP and cAMP, increased proximal and distal AQP8 expression, increased proximal but decreased distal AQP3 expression. However, these trends were reversed in both the HTT group (low, medium and high dose) and the positive control group. In NCM460 cells, HTT dose-dependently stabilized AQP3 and AQP8 expression under AQP3/8 plasmid interference or overexpression. CONCLUSIONS: HTT relieves constipation in rats through regulating AQP3 and AQP8 expression.


Asunto(s)
Acuaporinas , Loperamida , Ratas , Animales , Loperamida/efectos adversos , Loperamida/metabolismo , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Estreñimiento/genética , Acuaporinas/genética , Acuaporinas/metabolismo , Colon/metabolismo , Intestinos , AMP Cíclico/genética , AMP Cíclico/metabolismo
3.
J Integr Plant Biol ; 65(10): 2349-2367, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37548108

RESUMEN

Aquaporins are important transmembrane water transport proteins which transport water and several neutral molecules. However, how aquaporins are involved in the synergistic transport of Mg2+ and water remains poorly understood. Here, we found that the cassava aquaporin MePIP2;7 was involved in Mg2+ transport through interaction with MeMGT9, a lower affinity magnesium transporter protein. Knockdown of MePIP2;7 in cassava led to magnesium deficiency in basal mature leaves with chlorosis and necrotic spots on their edges and starch over-accumulation. Mg2+ content was significantly decreased in leaves and roots of MePIP2;7-RNA interference (PIP-Ri) plants grown in both field and Mg2+ -free hydroponic solution. Xenopus oocyte injection analysis verified that MePIP2;7 possessed the ability to transport water only and MeMGT9 was responsible for Mg2+ efflux. More importantly, MePIP2;7 improved the transportability of Mg2+ via MeMGT9 as verified using the CM66 mutant complementation assay and Xenopus oocytes expressing system. Yeast two-hybrid, bimolecular fluorescence complementation, co-localization, and co-immunoprecipitation assays demonstrated the direct protein-protein interaction between MePIP2;7 and MeMGT9 in vivo. Mg2+ flux was significantly elevated in MePIP2;7-overexpressing lines in hydroponic solution through non-invasive micro-test technique analysis. Under Mg2+ -free condition, the retarded growth of PIP-Ri transgenic plants could be recovered with Mg2+ supplementation. Taken together, our results demonstrated the synergistic effect of the MePIP2;7 and MeMGT9 interaction in regulating water and Mg2+ absorption and transport in cassava.


Asunto(s)
Acuaporinas , Manihot , Manihot/genética , Acuaporinas/genética , Acuaporinas/metabolismo , Transporte Biológico , Agua/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/metabolismo
4.
Front Biosci (Landmark Ed) ; 28(6): 126, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37395039

RESUMEN

BACKGROUND: Lipopolysaccharide (LPS), an effective stimulator of the immune system, has been widely applied in an experimental pig model for human sepsis. Aquaporins (AQPs), a family of small integral membrane proteins responsible for facilitating water fluxes through the cell membrane, offer potential promising drug targets for sepsis treatment due to their role in water balance and inflammation. METHODS: In order to investigate the potential effect of a dietary amino acid mixture supplementation on LPS-challenged weaned piglets, a total of 30, 28-day-old, males were randomly allocated to 1 of 3 dietary treatments for a 5-week period, with 10 animals in each: diet 1 was a control (CTL) treatment; diet 2 was LPS treatment, where the piglets were intraperitoneally administered LPS (at 25 µg/kg body weight); diet 3 was LPS + cocktail treatment, where the piglets were intraperitoneally administered LPS and fed a diet supplemented with a mixture of arginine, branched-chain amino acids (BCAA, leucine, valine, and isoleucine), and cystine. Key organs that control sepsis were collected and processed by real time quantitative PCR (RT-qPCR) for the AQPs and cytokines transcriptional profiles. RESULTS: Minor variations were detected for AQPs and inflammatory markers mRNA levels, upon the dependence of LPS or the amino acid cocktail suggesting the piglets' immune recovery. Using a discriminant analysis tool, we report for the first time, a tissue-specific variation in AQPs and cytokines transcriptional profiles that clearly distinguish the small intestine and the kidney from the liver and the spleen. CONCLUSIONS: This study provides a novel insight into the gene expression signature of AQPs and cytokines in the functional physiology of each organ in piglets.


Asunto(s)
Acuaporinas , Lipopolisacáridos , Masculino , Porcinos , Animales , Humanos , Lipopolisacáridos/farmacología , Suplementos Dietéticos/análisis , Aminoácidos , Citocinas/genética , Citocinas/metabolismo , Acuaporinas/genética , Agua/metabolismo
5.
J Ethnopharmacol ; 311: 116431, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003403

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sennoside A is a natural anthraquinone component mainly derived from rhubarb and has been routinely used as a clinical stimulant laxative. However, long-term application of sennoside A may lead to drug resistance and even adverse reactions, thus limiting its clinical use. Therefore, to reveal the time-dependent laxative effect and potential mechanism of sennoside A is of critical importance. AIM OF THE STUDY: This study was conducted to investigate the time-dependent laxative effect of sennoside A and unveil its underlying mechanism from the perspective of gut microbiota and aquaporins (AQPs). MATERIALS AND METHODS: Based on a mouse constipation model, 2.6 mg/kg sennoside A was administered orally for 1, 3, 7, 14 and 21 days, respectively. The laxative effect was assessed by the fecal index and fecal water content, the histopathology of the small intestine and colon was evaluated by hematoxylin-eosin staining. Gut microbiota changes was observed by 16S rDNA sequencing, and colonic AQPs expression was analyzed by quantitative real-time polymerase chain reaction and western blotting. Partial least-squares regression (PLSR) was used to screen out the effective indicators contributing to the laxative effect of sennoside A. The effective indicators were then fitted to time by a drug-time curve model to analyze the trend of efficacy of sennoside A, and the optimal time of administration was derived by comprehensive analysis with a three-dimensional (3D) time-effect image. RESULTS: Sennoside A had a significant laxative effect at 7 days of administration with no pathological changes in the small intestine or colon; however, at 14 or 21 days of administration, the laxative effect diminished and slight damage to the colon was observed. Sennoside A affects the structure and function of gut microbes. The alpha diversity showed that the abundance and diversity of gut microorganisms reached the highest value after 7 days of administration. Partial least squares discriminant analysis showed that the composition of the flora was close to normal when administered for less than 7 days, but was closest to the composition of constipation over 7 days. The expression of aquaporin 3 (AQP3) and aquaporin 7 (AQP7) decreased gradually after the administration of sennoside A, with the lowest expression at 7 days, and then increased gradually afterwards, while the expression of aquaporin 1 (AQP1) was the opposite. The PLSR results showed that AQP1, AQP3, Lactobacillus, Romboutsia, Akkermansia and UCG_005 contributed more to the laxative effect of the fecal index, and after fitting with the drug-time curve model, each index showed a trend of increasing and then decreasing. The comprehensive evaluation of the 3D time-effect image concluded that the laxative effect of sennoside A reached its best after 7 days of administration. CONCLUSION: Sennoside A should be used in regular dosages for less than one week, as it provides significant relief of constipation and exhibits no colonic damage within 7 days of administration. In addition, Sennoside A exerts its laxative effect by regulating gut microbiota of Lactobacillus Romboutsia, Akkermansia and UCG_005 and water channels of AQP1 and AQP3.


Asunto(s)
Acuaporinas , Microbioma Gastrointestinal , Rheum , Ratones , Animales , Laxativos/farmacología , Laxativos/química , Senósidos/farmacología , Acuaporinas/genética , Acuaporinas/metabolismo , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Acuaporina 3/metabolismo
6.
J Agric Food Chem ; 71(8): 3862-3875, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36802556

RESUMEN

This study aimed to investigate the amendatory effects of Fu brick tea aqueous extract (FTE) on constipation and its underlying molecular mechanism. The administration of FTE by oral gavage (100 and 400 mg/kg·bw) for 5 weeks significantly increased fecal water content, improved difficult defecation, and enhanced intestinal propulsion in loperamide (LOP)-induced constipated mice. FTE also reduced colonic inflammatory factors, maintained the intestinal tight junction structure, and inhibited colonic Aquaporins (AQPs) expression, thus normalizing the intestinal barrier and colonic water transport system of constipated mice. 16S rRNA gene sequence analysis results indicated that two doses of FTE increased the Firmicutes/Bacteroidota (F/B) ratio at the phylum level and increased the relative abundance of Lactobacillus from 5.6 ± 1.3 to 21.5 ± 3.4% and 28.5 ± 4.3% at the genus level, subsequently resulting in a significant elevation of colonic contents short-chain fatty acids levels. The metabolomic analysis demonstrated that FTE improved levels of 25 metabolites associated with constipation. These findings suggest that Fu brick tea has the potential to alleviate constipation by regulating gut microbiota and its metabolites, thereby improving the intestinal barrier and AQPs-mediated water transport system in mice.


Asunto(s)
Acuaporinas , Microbioma Gastrointestinal , Ratones , Animales , ARN Ribosómico 16S/genética , Estreñimiento/tratamiento farmacológico , Estreñimiento/metabolismo , Acuaporinas/genética ,
7.
J Biosci Bioeng ; 135(5): 375-381, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36841726

RESUMEN

In this study, glycerate was produced from glucose using engineered Escherichia coli BW25113. Plasmid pSR3 carrying gpd1 and gpp2 encoding two isoforms of glycerol-3-phosphate dehydrogenase from Saccharomyces cerevisiae and plasmid pLB2 carrying aldO encoding alditol oxidase from Streptomyces violaceoruber were introduced into E. coli to enable the production of glycerate from glucose via glycerol. Disruptions of garK and glxK genes in the E. coli genome were performed to minimize the consumption of glycerate produced. As a result, E. coli carrying these plasmids could produce nearly three times higher concentration of glycerate (0.50 ± 0.01 g/L) from 10 g/L glucose compared to E. coli EG_2 (0.14 ± 0.02 g/L). In M9 medium, disruption of garK and glxK resulted in an impaired growth rate with low production of glycerate, while supplementation of 0.5 g/L casamino acids and 0.5 g/L manganese sulfate to the medium replenished the growth rate and elevated the glycerate titer. Further disruption of glpF, encoding a glycerol transporter, increased the glycerate production to 0.80 ± 0.00 g/L. MR2 medium improved the glycerate production titers and specific productivities of E. coli EG_4, EG_5, and EG_6. Upscale production of glycerate was carried out in a jar fermentor with MR2 medium using E. coli EG_6, resulting in an improvement in glycerate production up to 2.37 ± 0.46 g/L with specific productivity at 0.34 ± 0.11 g-glycerate/g-cells. These results indicate that E. coli is an appropriate host for glycerate production from glucose.


Asunto(s)
Acuaporinas , Proteínas de Escherichia coli , Escherichia coli/genética , Glicerol , Glucosa , Saccharomyces cerevisiae/genética , Glicerolfosfato Deshidrogenasa/genética , Fermentación , Ingeniería Metabólica/métodos , Acuaporinas/genética , Proteínas de Escherichia coli/genética
8.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35955466

RESUMEN

(1) Background: Changes in the expression of aquaporins (AQPs) in the intestine are proved to be associated with the attenuation of diarrhea. Diarrhea is a severe problem for postweaning piglets. Therefore, this study aimed to investigate whether niacin could alleviate diarrhea in weaned piglets by regulating AQPs expression and the underlying mechanisms; (2) Methods: 72 weaned piglets (Duroc × (Landrace × Yorkshire), 21 d old, 6.60 ± 0.05 kg) were randomly allotted into 3 groups for a 14-day feeding trial. Each treatment group included 6 replicate pens and each pen included 4 barrows (n = 24/treatment). Piglets were fed a basal diet (CON), a basal diet supplemented with 20.4 mg niacin/kg diet (NA) or the basal diet administered an antagonist for the GPR109A receptor (MPN). Additionally, an established porcine intestinal epithelial cell line (IPEC-J2) was used to investigate the protective effects and underlying mechanism of niacin on AQPs expression after Escherichia coli K88 (ETEC K88) treatment; (3) Results: Piglets fed niacin-supplemented diet had significantly decreased diarrhea rate, and increased mRNA and protein level of ZO-1, AQP 1 and AQP 3 in the colon compared with those administered a fed diet supplemented with an antagonist (p < 0.05). In addition, ETEC K88 treatment significantly reduced the cell viability, cell migration, and mRNA and protein expression of AQP1, AQP3, AQP7, AQP9, AQP11, and GPR109A in IPEC-J2 cells (p < 0.05). However, supplementation with niacin significantly prevented the ETEC K88-induced decline in the cell viability, cell migration, and the expression level of AQPs mRNA and protein in IPEC-J2 cells (p < 0.05). Furthermore, siRNA GPR109A knockdown significantly abrogated the protective effect of niacin on ETEC K88-induced cell damage (p < 0.05); (4) Conclusions: Niacin supplementation increased AQPs and ZO-1 expression to reduce diarrhea and intestinal damage through GPR109A pathway in weaned piglets.


Asunto(s)
Acuaporinas , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Niacina , Animales , Acuaporinas/genética , Diarrea/tratamiento farmacológico , Diarrea/prevención & control , Diarrea/veterinaria , Infecciones por Escherichia coli/prevención & control , Intestinos , Niacina/farmacología , ARN Mensajero , Porcinos , Regulación hacia Arriba
9.
Front Biosci (Landmark Ed) ; 27(3): 83, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-35345315

RESUMEN

BACKGROUND: Dietary supplementation with L-arginine (Arg) has been shown to increase the volume of fetal fluids in gestating swine. Aquaporins (AQPs), known as water channel proteins, are essential for embryonic growth and development. It was not known if Arg mediates water transport through AQPs in porcine conceptus trophectoderm (pTr2) cells. METHODS: pTr2 cells derived from pregnant gilts on day 12 of gestation were cultured in customized Arg-free Dulbecco's modified Eagle's Ham medium (DMEM) supplemented with either 0.00, 0.25, or 0.50 mM Arg. RESULTS: Arg treatment increased water transport and the expression of AQP3, which was abundantly expressed in pTr2 cells at both the mRNA and protein levels. Arg also increased the expression of iNOS and the synthesis of nitric oxide (NO) in pTr2 cells. The presence of Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME; an inhibitor of NO synthase) significantly attenuated the Arg-induced expression of AQP3. Furthermore, 0.50 mM Arg increased the concentrations of cAMP and the abundances of phosphorylated cAMP-dependent protein kinase A (PKA), phosphorylated PKA α/ß/γ, and phosphorylated CREB. These effects of Arg were mimicked by Forskolin (a cell-permeable activator of adenylyl cyclase), but inhibited by H-89 (an inhibitor of cAMP-dependent protein kinase). CONCLUSIONS: The results of this study demonstrate that Arg regulates AQP3 expression and promotes water transport in pTr2 cells through NO- and cAMP-dependent signaling pathways.


Asunto(s)
Acuaporinas , Óxido Nítrico , Animales , Acuaporina 3/genética , Acuaporinas/genética , Arginina/metabolismo , Arginina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Óxido Nítrico/metabolismo , Embarazo , Sus scrofa/metabolismo , Porcinos , Agua/metabolismo
10.
J Anim Physiol Anim Nutr (Berl) ; 106(1): 167-180, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33811387

RESUMEN

Aquaporins (AQP) are a class of water channel membrane proteins that are widely expressed in the gut. The biological functions of aquaporins, which regulate the absorption and secretion of water molecules and small solutes, maintain the stable state of the intestine, regulate cell proliferation and migration, participate in the process of intestinal inflammation, and mediate tumorigenesis, demonstrate the physiological significance of these channels in intestinal health. The pathology of many intestinal diseases is associated with changes in the location and expression of aquaporins, such as intestinal infection, which can change the expression and distribution of AQPs in intestinal tissues/cells by affecting cytokines and chemokines. This can lead to various intestinal diseases such as diarrhoea, which also suggests the importance of aquaporins in the prevention and treatment of intestinal diseases. This review summarizes the relationship between aquaporins and intestinal physiology and diseases and focuses on drugs (such as plant extracts) or diets that can regulate intestinal health by regulating aquaporins. It provides a basis for establishing aquaporins as biomarkers and therapeutic targets for intestinal health.


Asunto(s)
Acuaporinas , Animales , Acuaporinas/genética , Proliferación Celular , Dieta/veterinaria , Nutrientes , Agua/metabolismo
11.
FEBS J ; 289(1): 246-261, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34293244

RESUMEN

Plant PIP aquaporins play a central role in controlling plant water status. The current structural model for PIP pH-gating states that the main pH sensor is located in loopD and that all the mobile cytosolic elements participate in a complex interaction network that ensures the closed structure. However, the precise participation of the last part of the C-terminal domain (CT) in PIP pH gating remains unknown. This last part has not been resolved in PIP crystal structures and is a key difference between PIP1 and PIP2 paralogues. Here, by a combined experimental and computational approach, we provide data about the role of CT in pH gating of Beta vulgaris PIP. We demonstrate that the length of CT and the positive charge located among its last residues modulate the pH at which the open/closed transition occurs. We also postulate a molecular-based mechanism for the differential pH sensing in PIP homo- or heterotetramers by performing atomistic molecular dynamics simulations (MDS) on complete models of PIP tetramers. Our findings show that the last part of CT can affect the environment of loopD pH sensors in the closed state. Results presented herein contribute to the understanding of how the characteristics of CT in PIP channels play a crucial role in determining the pH at which water transport through these channels is blocked, highlighting the relevance of the differentially conserved very last residues in PIP1 and PIP2 paralogues.


Asunto(s)
Acuaporinas/genética , Transporte Biológico/genética , Proteínas de la Membrana/genética , Proteínas de Plantas/genética , Acuaporinas/metabolismo , Beta vulgaris/genética , Beta vulgaris/metabolismo , Citosol/metabolismo , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Multimerización de Proteína , Agua/metabolismo
12.
Environ Pollut ; 294: 118606, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863894

RESUMEN

Understanding of aquaporins (AQPs) facilitating the transport of water and many other small solutes including metalloids like silicon (Si) and arsenic (As) is important to develop stress tolerant cultivars. In the present study, 40 AQPs were identified in the genome of pigeonpea (Cajanus cajan), a pulse crop widely grown in semi-arid region and areas known to affected with heavy metals like As. Conserved domains, variation at NPA motifs, aromatic/arginine (ar/R) selectivity filters, and pore morphology defined here will be crucial in predicting solute specificity of pigeonpea AQPs. The study identified CcNIP2-1 as an AQP predicted to transporter Si (beneficial element) as well as As (hazardous element). Further Si quantification in different tissues showed about 1.66% Si in leaves which confirmed the predictions. Furthermore, scanning electron microscopy showed a higher level of Si accumulation in trichomes on the leaf surface. A significant alleviation in level of As, Sb and Ge stress was also observed when these heavy metals were supplemented with Si. Estimation of relative water content, H2O2, lipid peroxidation, proline, total chlorophyll content and other physiological parameters suggested Si derived stress tolerance. Extensive transcriptome profiling under different developmental stages from germination to senescence was performed to understand the tissue-specific regulation of different AQPs. For instance, high expression of TIP3s was observed only in reproductive tissues. Co-expression network developed using transcriptome data from 30 different conditions and tissues, showed interdependency of AQPs. Expression profiling of pigeonpea performed using real time PCR showed differential expression of AQPs after Si supplementation. The information generated about the phylogeny, distribution, molecular evolution, solute specificity, and gene expression dynamics in article will be helpful to better understand the AQP transport system in pigeonpea and other legumes.


Asunto(s)
Acuaporinas , Arsénico , Cajanus , Germanio , Antimonio , Acuaporinas/genética , Cajanus/genética , Peróxido de Hidrógeno , Silicio
13.
Int J Biol Macromol ; 193(Pt B): 1286-1293, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34757130

RESUMEN

The effect of dietary ß-glucan on seminal plasma composition, sperm characteristics, expression of aquaporins, and antioxidative defence genes of golden mahseer was evaluated. For that, four experimental diets containing 0 (control), 0.5, 1, and 1.5% ß-glucan were fed to male golden mahseer brooders for 130 days. Feeding of 0.5% ß-glucan was found to improve sperm characteristics, viz. sperm count, motility, viability, and morphology with no effect on gonadosomatic index and seminal plasma energy resources. The marked down-regulation in the transcript abundance of testicular aqp3a noticed in 1.5% ß-glucan fed brooders corresponds to their poor sperm quality. Further, the mRNA expression of genes encoding antioxidant enzymes, namely gst and sod1, was lowest in 0.5% ß-glucan fed brooders. In contrast, control and higher ß-glucan (1 and 1.5%) groups displayed relatively higher expression levels of testicular gst and sod1. On the other hand, the higher seminal plasma total antioxidant capacity observed in 0.5 and 1% ß-glucan fed brooders indicated increased scavenging ability of reactive oxygen species. Overall, supplementation of 0.5% ß-glucan improved sperm quality and antioxidative potential, but the higher inclusion (1.5%) negatively affected sperm characteristics. Collectively, dietary ß-glucan (0.5%) can be a practical approach to developing quality broodstock of golden mahseer.


Asunto(s)
Antioxidantes/metabolismo , Acuaporinas/genética , Cyprinidae/genética , Cyprinidae/metabolismo , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , beta-Glucanos/farmacología , Animales , Suplementos Dietéticos , Masculino , Semen/efectos de los fármacos , Semen/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo
14.
Biomed Pharmacother ; 144: 112261, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34628163

RESUMEN

Doxorubicin (Dox), an effective antineoplastic drug, was limited use for cardiotoxicity. Xinshuitong Capsule (XST), a patented herbal formula, showed desirable beneficial effects in the treatment of chronic heart failure (CHF) patients. However, the drug on Dox-induced cardiotoxicity remains unclear. Ninety male Sprague-Dawley rats were randomized into two groups: 15 rats were selected as the normal group and 75 rats were injected intraperitoneally with Dox to establish CHF rat models, the success ones were randomly divided into five groups: low XST (LXST), medium XST (MXST) or high XST (HXST) (4.9, 9.8, or 19.6 g/kg d) administrated intragastrically twice a day for 4 weeks, with the captopril-treated group and the model group as comparison. The model group showed the cardiac functions generally impaired, and CHF mortality rate higher (47%) than those in the XST-treated groups (averaged 24%, P < 0.05). Compared with XST-treated groups, myocardial remodeling, inflammation and desarcomerization, and higher water content more severe in the cardiac tissue in the model group (P < 0.05), which was associated with higher expressions of mRNA or protein levels of AQP1, 4 and 7. Dox-impaired cardiac functions, cardiac remodeling and myocardial edema could be dose-dependently reverted by XST treatment. XST could inhibit AQP1, 4 and 7 at mRNA levels or at protein levels, which was associated with the attenuation of myocardial edema and cardiac remodeling, decreasing the ventricular stiffness and improving the cardiac functions and rats' survival. AQPs is involved in cardiac edema composed one of the mechanisms of Dox-induced cardiotoxicity, XSTvia inhibition of AQPs relieved the Dox-induced side effects.


Asunto(s)
Acuaporinas/antagonistas & inhibidores , Medicamentos Herbarios Chinos/farmacología , Edema Cardíaco/prevención & control , Insuficiencia Cardíaca/prevención & control , Miocardio/metabolismo , Administración Oral , Animales , Acuaporina 1/antagonistas & inhibidores , Acuaporina 1/genética , Acuaporina 1/metabolismo , Acuaporina 4/antagonistas & inhibidores , Acuaporina 4/genética , Acuaporina 4/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Agua Corporal/metabolismo , Cápsulas , Cardiotoxicidad , Enfermedad Crónica , Modelos Animales de Enfermedad , Doxorrubicina , Medicamentos Herbarios Chinos/administración & dosificación , Edema Cardíaco/inducido químicamente , Edema Cardíaco/metabolismo , Edema Cardíaco/patología , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Masculino , Miocardio/patología , Ratas Sprague-Dawley , Transducción de Señal , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
15.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34360903

RESUMEN

Despite the fact that many studies have examined the effectiveness of different gaseous postharvest treatments applied at low temperature to maintain table grape quality, the use of ethanol vapor has hardly been investigated. Thus, this work has studied the effectiveness of ethanol vapor-generating sachets in the maintenance of It 681-30 table grape quality, a new cultivar, during storage at low temperature and after the shelf-life period at 20 °C. To this end, various quality assessments have been carried out and the effect of the ethanol treatment on the expression of different genes (phenylpropanoids, transcription factors, PRs, and aquaporins) was determined. The results indicated that the application of ethanol vapor reduced the total decay incidence, weight loss, and the rachis browning index in It 681-30 grapes stored at 0 °C and after the shelf-life period at 20 °C, as compared to non-treated samples. Moreover, the modulation of STS7 and the different PR genes analyzed seems to play a part in the molecular mechanisms activated to cope with fungal attacks during the postharvest of It 681-30 grapes, and particularly during the shelf-life period at 20 °C. Furthermore, the expression of aquaporin transcripts was activated in samples showing higher weight loss. Although further work is needed to elucidate the role of ethanol in table grape quality, the results obtained in this work provide new insight into the transcriptional regulation triggered by ethanol treatment.


Asunto(s)
Frío , Etanol/farmacología , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Calidad de los Alimentos , Almacenamiento de Alimentos/métodos , Frutas/efectos de los fármacos , Gases/farmacología , Vitis/efectos de los fármacos , Acuaporinas/genética , Frutas/genética , Expresión Génica/efectos de los fármacos , Reacción de Maillard/efectos de los fármacos , Proteínas de Plantas/genética , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos , Vitis/genética , Volatilización
16.
J Ethnopharmacol ; 272: 113925, 2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-33592255

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Atractylodes lancea (Thunb.) DC. is a widely used traditional herb that is well known for treating spleen deficiency and diarrhea. According to traditional Chinese medicine (TCM) theory, diarrhea-predominant irritable bowel syndrome (IBS-D) is caused by cold and dampness, resulting in diarrhea and abdominal pain. Nevertheless, the effect and mechanism of Atractylodes on IBS-D are still unclear. AIM OF THE STUDY: This study was designed to confirm the therapeutic effect of Atractylodes lanceolata oil (AO) in a rat model of IBS-D, and to determine the mechanisms by which AO protects against the disease. MATERIALS AND METHODS: The chemical components in AO were determined using gas chromatography-mass spectrometry (GC-MS). The expression levels of 5-hydroxytryptamine (5-HT), vasoactive intestinal peptide (VIP), and surfactant protein (SP) in serum and colon tissue were measured using enzyme-linked immunosorbent assay (ELISA). Reverse transcription-polymerase chain reaction (RT-PCR), western blotting (WB), immunohistochemistry (IHC), and immunofluorescence (IF) were used to elucidate the mechanism of action of AO toward inflammation and the intestinal barrier in a rat model of IBS-D. RESULTS: The 15 chemical substances of the highest concentration in AO were identified using GC-MS. AO was effective against IBS-D in the rat model, in terms of increased body weight, diarrhea grade score, levels of interleukin-10 (IL-10), aquaporin 3 (AQP3), and aquaporin 8 (AQP8), and reduced fecal moisture content, levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), 5-HT, VIP, and SP, while also reducing intestinal injury, as observed using hematoxylin-eosin (HE) staining. In addition, the results indicated that AO increased the mRNA and protein expression levels of stem cell factor (SCF) and c-kit and enhanced the levels of zonula occludens-1 (ZO-1) and occludin, as well as decreased the levels of myosin light chain kinase (MLCK) and inhibited the phosphorylation of myosin light chain 2 (p-MLC2). CONCLUSIONS: AO was found to be efficacious in the rat model of IBS-D. AO inhibited the SCF/c-kit pathway, thereby reducing inflammation and protecting against intestinal barrier damage via the MLCK/MLC2 pathway.


Asunto(s)
Atractylodes/química , Síndrome del Colon Irritable/tratamiento farmacológico , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Aceites de Plantas/farmacología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Factor de Células Madre/metabolismo , Animales , Acuaporinas/genética , Acuaporinas/metabolismo , Colitis/metabolismo , Citocinas/genética , Citocinas/metabolismo , Diarrea/tratamiento farmacológico , Mucosa Intestinal/efectos de los fármacos , Síndrome del Colon Irritable/patología , Cadenas Ligeras de Miosina/genética , Quinasa de Cadena Ligera de Miosina/genética , Aceites de Plantas/química , Aceites de Plantas/uso terapéutico , Proteínas Proto-Oncogénicas c-kit/genética , Ratas Sprague-Dawley , Serotonina/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Células Madre/genética , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
17.
J Ethnopharmacol ; 272: 113951, 2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-33610702

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lagopsis supina (Steph.) Ik. -Gal. ex Knorr. has been widely used as a remedy treatment for diuresis and edema in China over 2500 years. Our previous results showed that the aqueous soluble fraction from L. supina (LSB) possessed acute diuretic effect. AIM OF THE STUDY: The aim of this study was to appraise the acute (6 h) and prolonged (7 d) diuretic effects, underlying mechanisms, and chemical profiling of LSB. MATERIALS AND METHODS: The chemical profiling of LSB was performed by ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-qTOF-MS/MS). Then, oral administration of LSB (40, 80, 160 and 320 mg/kg) and furosemide (10 mg/kg) once daily for 7 consecutive days to evaluate the diuretic effects in saline-loaded rats. The body weight, food consumption, and water intake were recorded once daily. The urinary volume, pH and electrolyte concentrations (Na+, K+, Cl-, and Ca2+) were measured after administration drugs for acute and prolonged diuretic effects. In addition, the serum levels of Na+-K+-ATPase, angiotensin II (Ang II), anti-diuretic hormone (ADH), aldosterone (ALD), atriopeptin (ANP), aquaporins (AQPs)-1, 2 and 3 were determined by ELISA kits. The mRNA expressions and protein levels of AQPs-1, 2 and 3 were analyzed by real-time quantitative PCR and Western blot assays, respectively. RESULTS: 30 compounds were identified in LSB based on accurate mass and MS/MS fragmentation compared to literature, among which phenylpropanoids and flavonoids could be partly responsible for the major diuretic effect. Daily administration of LSB (160 or 320 mg/kg) prominently increased urinary excretion volume after the 2 h at the first day of treatment, remaining until the 7th day. LSB did not cause Na+ and K+ electrolyte abnormalities, and has minor effect on Cl- and Ca2+ concentrations at 320 mg/kg. Furthermore, LSB observably suppressed renin-angiotensin-aldosterone system (RAAS) activation, including decreased serum levels of Ang II, ADH, and ALD, and prominently increased serum level of ANP in rats. LSB treatment significantly down-regulated the serum levels, mRNA expressions and protein levels of AQP1, AQP2, and AQP3. CONCLUSION: LSB has a prominent acute and prolonged diuretic effects via suppression of AQP and RAAS pathways in saline-loaded rats, and support the traditional folk use of this plant. Taken together, LSB might be a potential diuretic agent.


Asunto(s)
Acuaporinas/antagonistas & inhibidores , Diuréticos/farmacología , Lamiaceae/química , Sistema Renina-Angiotensina/efectos de los fármacos , Animales , Acuaporinas/sangre , Acuaporinas/genética , Acuaporinas/metabolismo , Peso Corporal/efectos de los fármacos , Diuréticos/sangre , Diuréticos/uso terapéutico , Ingestión de Líquidos/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Electrólitos/metabolismo , Masculino , Ratas Sprague-Dawley , Sodio/administración & dosificación , ATPasa Intercambiadora de Sodio-Potasio/efectos de los fármacos , Solubilidad , Orina , Agua/química
18.
Plant Cell Physiol ; 62(4): 590-599, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-33570563

RESUMEN

Boron (B) is an essential trace element in plants, and borate cross-linking of pectic polysaccharide rhamnogalacturonan-II (RG-II) in cell walls is required for normal cell growth. High concentrations of B are toxic to cells. Therefore, plants need to control B transport to respond to B conditions in the environment. Over the past two decades, genetic analyses of Arabidopsis thaliana have revealed that B transport is governed by two types of membrane transport molecules: NIPs (nodulin-26-like intrinsic proteins), which facilitate boric acid permeation, and BORs, which export borate from cells. In this article, we review recent findings on the (i) regulation at the cell level, (ii) diversity among plant species and (iii) evolution of these B transporters in plants. We first describe the systems regulating these B transporters at the cell level, focusing on the molecular mechanisms underlying the polar localization of proteins and B-dependent expression, as well as their physiological significance in A. thaliana. Then, we examine the presence of homologous genes and characterize the functions of NIPs and BORs in B homeostasis, in a wide range of plant species, including Brassica napus, Oryza sativa and Zea mays. Finally, we discuss the evolutionary aspects of NIPs and BORs as B transporters, and the possible relationship between the diversification of B transport and the occurrence of RG-II in plants. This review considers the sophisticated systems of B transport that are conserved among various plant species, which were established to meet mineral nutrient requirements.


Asunto(s)
Boro/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arsenitos/metabolismo , Transporte Biológico , Ácidos Bóricos/metabolismo , Proteínas Portadoras/genética , Evolución Molecular , Modelos Teóricos , Pectinas/metabolismo , Proteínas de Plantas/genética , Plantas/genética
19.
PLoS One ; 16(1): e0245739, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33465153

RESUMEN

The regulation of glycerol permeability in the gastrointestinal tract is crucial to control fat deposition, lipolysis and gluconeogenesis. Knowing that the amino acid glutamine is a physiological regulator of gluconeogenesis, whereas cystine promotes adiposity, herein we investigated the effects of dietary supplementation with glutamine and cystine on the serum biochemical parameters of piglets fed on amino acid-enriched diets, as well as on the transcriptional profile of membrane water and glycerol channels aquaporins (AQPs) in the ileum portion of the small intestine and its impact on intestinal permeability. Twenty male piglets with an initial body weight of 8.8 ± 0.89 kg were allocated to four dietary treatments (n = 5) and received, during a four week-period, a basal diet without supplementation (control) or supplemented with 8 kg/ton of glutamine (Gln), cystine (Cys) or the combination of the two amino acids in equal proportions (Gln + Cys). Most biochemical parameters were found improved in piglets fed Gln and Cys diet. mRNA levels of AQP3 were found predominant over the others. Both amino acids, individually or combined, were responsible for a consistent downregulation of AQP1, AQP7 and AQP10, without impacting on water permeability. Conversely, Cys enriched diet upregulated AQP3 enhancing basolateral membranes glycerol permeability and downregulating glycerol kinase (GK) of intestinal cells. Altogether, our data reveal that amino acids dietary supplementation can modulate intestinal AQPs expression and unveil AQP3 as a promising target for adipogenesis regulation.


Asunto(s)
Alimentación Animal/análisis , Acuaporinas/metabolismo , Cistina/farmacología , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Glutamina/farmacología , Intestino Delgado/metabolismo , Animales , Animales Recién Nacidos , Acuaporinas/genética , Cistina/administración & dosificación , Glutamina/administración & dosificación , Intestino Delgado/efectos de los fármacos , Masculino , Porcinos
20.
J Ethnopharmacol ; 267: 113489, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33091498

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Euphorbia kansui (EK) is the dried root of Euphorbia kansui S.L.Liou ex S.B.Ho. Clinically, processing with vinegar is for reducing toxicity of EK, and EK stir-fried with vinegar (VEK) is used to treat ascites and edema. VEK has been confirmed to reduce ascites by accelerating the promotion of intestinal contents. AIM OF THE STUDY: The study aimed to investigate whether gut microbiota could affect the expelling water retention effects and the intestinal oxidative damage of EK and VEK on malignant ascites effusion (MAE) rats. MATERIALS AND METHODS: Pseudo-germ-free (PGF) MAE rats or probiotic intervented MAE rats were treated with EK/VEK. Related indicators such as serum, ascites, urine, feces, gastrointestinal tissues were analyzed, and the structure of the gut microbiota were also studied. The relationship between gut microbiota and the expelling water retention effects of EK/VEK where then further investigated. RESULTS: VEK reduce the volume of ascites by promoting urine and feces excretion, AQP8 protein and mRNA expression, when comparing with the MAE rats, also VEK could regulate the disordered gut microbiota in MAE rats. Mixed antibiotics could diminish VEK's expelling water retention effects in MAE rats, but increased oxidative damage in intestine. While existence of gut microbiota (especially probiotics) played an important role in the protection of intestines in VEK treated MAE rats. CONCLUSION: VEK had obvious pharmacological effect on MAE and could regulate gut microbiota, but gut microbiota was not a necessary condition for its pharmacological effects. The probiotics played a synergistic role with VEK in the effects of expelling water retention and intestinal protection.


Asunto(s)
Ácido Acético/química , Ascitis/prevención & control , Bacterias/efectos de los fármacos , Culinaria , Euphorbia , Microbioma Gastrointestinal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Acuaporinas/genética , Acuaporinas/metabolismo , Ascitis/etiología , Ascitis/microbiología , Ascitis/patología , Bacterias/crecimiento & desarrollo , Línea Celular Tumoral , Defecación/efectos de los fármacos , Euphorbia/química , Calor , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Intestino Delgado/patología , Masculino , Neoplasias/complicaciones , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Probióticos/farmacología , Ratas Sprague-Dawley , Micción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA